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APPENDIX A
PROOF OF LEMMA 1
Note that ∀x, y, z with x ≥ 0, 0 ≤ y ≤ ymax, 0 ≤ z ≤ zmax,
we have

(max{x− y, 0}+ z)2 ≤ x2 + y2 + z2 + 2x(z − y)

≤ x2 + y2max + z2max + 2x(z − y). (A.1)

Due to (11), we know that
∑

j∈Ti
f r
ij(t) ≤

∑

j∈Ti

∑

r∈R f
r
ij(t) ≤

1
α

∑

j∈Ti

∑

m∈Mi∩Mj
cmij (t)s

m
ij (t)∆t.

Denote by cmax
ij the maximum possible link capacity

of link (i, j). Since according to (1) cmij (t) depends on
d(i, j), Pm
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Besides, we have ǫri (t) ≤ Omax
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r . Thus,
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Applying this inequality to the drift-plus-penalty func-
tion, we have
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Thus, Lemma 1 directly follows.

APPENDIX B
PROOF OF LEMMA 2

According to (11) and (17), we get
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According to (A.2) and (B.1), we can obtain
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Thus, Lemma 2 directly follows.

APPENDIX C
PROOF OF LEMMA 3
Denote the optimal amount of CPS services that maxi-
mizes P1 and minimizes P2 by v∗r (t) and v̂∗r (t), respec-
tively. Thus, according to (14), we can know that
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The second step is because the optimal solution to
P1 is independent of the system queue size Q(t). The

third step is due to the strong law of large num-
bers: If {a(t)}∞t=0 are i.i.d. random variables, we have
Pr(limT→∞

1
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since the optimal solution to P1 is obtained based on
the available spectrum bandwidths and computing re-
sources, which are assumed to be i.i.d. random processes
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Taking expectation of the above inequality, we have
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which is a finite constant. Since in P1, Q(t) is strongly
stable, we can ensure its rate stability according to
Theorem 2.

Summing the above over t ∈ {0, 1, 2, ..., T − 1} for any
positive integer T yields
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Taking limitation as T → ∞ leads to
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