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1 NETWORK MODEL

The network model assumes that the network consists of
a number of clusters. In each cluster, one node is selected
as the CH that takes charge of central functions, and the
others (MNs) equally participate in team-functions. It is
well known that WSNs can be categorised as hierarchical
and flat according to routing protocols [?]. A hierarchical
WSN directly coincides with this model while, when
the detector is operated by a flat WSN, we have to
employ the additional techniques summarised in [?] to
intentionally cluster the nodes. Moreover, we assume
that the topology of the network is static, with all the
nodes time-synchronised.

For a flat WSN, we have to enforce the linear relation-
ships on every cluster and achieve a trade-off between
cost and effectiveness. In particular, it has to ensure that

• all the nodes within a cluster are spatially close to
each other,

• information can be transmitted between any pair of
nodes without multi-hopping and

• the scale of each cluster is moderate.
We assume that the BS knows the geographical coordi-
nates of the nodes and that the topology of the network
remains unchanged. Therefore, it is able to cluster the
nodes in advance using a fixed-width clustering algo-
rithm [?]. Suppose that ω denotes the fixed-width and ρ
the transmission radius of a node. Then, as the farthest
distance between two nodes within a cluster will be 2ω,
any two nodes can directly communicate when ρ ≥ 2ω.
The BS also randomly selects a CH for each cluster
which may be reselected periodically. Moreover, as all
the nodes are assumed to be time-synchronised, each
MN can collect a data segment of equal size during a
given period of time.
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Fig. 1. Topology and clusters of the network deployed at
the IBRL

As an example, we cluster the flat WSN deployed at

the IBRL which is used for the later numerical exper-
iments. This network is comprised of 54 Mica2 sensor
nodes and Figure 1 illustrates its topology together with
the resulting clusters from which damaged nodes are
removed (Nos. 5 and 15) and ω = 10.

2 ALGORITHMS AND FULL SCHEME

In this section, the main algorithms mentioned in the
main file are presented. In particular, each MN produces
its compressed difference sequence locally with Algo-
rithm 1 difference sequence compressor (DSC) and the CH
retrieves the raw rank sequence through Algorithm 2
difference sequence decompressor (DSD). The recovery of Q̄
is implemented by Algorithm 3 approximate sample covari-
ance matrix (ASCM) and then the detector is described
by Algorithm 4 prediction variance detector (PVD). These
algorithms comprise the full segment-based anomaly
detection scheme (SADS) given by Algorithm 5.

The full scheme works as follows. After a MN locally
collects a data segment, it obtains the rank sequence and
sample standard deviation, and performs Algorithm 1
to produce the compressed difference sequence. When
the CH collects all the compressed difference sequences
from the MNs, they are decompressed to their raw rank
sequences by Algorithm 2 and, if tied ranks are found
in a raw rank sequence, it will be transformed to a
reassigned rank sequence. Then, the CH can approxi-
mate the sample covariance matrix using Algorithm 3,
according to which the detection can be implemented
with Algorithm 4.

Algorithm 1 DSC
1. Ŝ∗ = DSC (S)
2. Ŝ (1) = S (1)
3. for i = 2 to n do
4. ∆ = S (i) − S (i − 1)
5. if ∆ ≤ 0 then
6. ∆ = 127 − ∆
7. end if
8. Ŝ (i) = ∆
9. end for

10. if if any ∆ ∈ Ŝ repeat more than 2 times then

11. Ŝ∗ :

 ∆ · · · ∆︸ ︷︷ ︸
repeat τ times

 → [∆ 0 d]

12. end if
13. return Ŝ∗

Algorithm 2 DSD
1. S = DSD

(
Ŝ∗

)
2. if any [∆ 0 τ ] found in Ŝ∗ then

3. Ŝ : [∆ 0 τ ] →

 ∆ · · · ∆︸ ︷︷ ︸
repeat τ times


4. end if
5. S (1) = Ŝ (1)
6. for i = 2 to n do
7. if Ŝ (i) ≥ 127 then
8. ∆ = 127 − Ŝ (i)
9. end if

10. S (i) = S (i − 1) + ∆
11. end for
12. return S
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TABLE 2
Anomaly injectors

Type Function k γ |s|
I Xk(s) = γ · mean(Xk(s)) [1,m] [0.98, 1.02] 0.75n
II Xk(s) = Xk(s) + γ · std(Xk(s)) [1,m] [−10, 10] 0.1n
III Xk(s) = Xk(s) + noise [1,m] [1.2, 1.4] 0.75n
IV Xk(s) = Xk(s) + noise [1,m] [2.25, 3.25] 0.33n
noise ∼ N(0, γ · V ar(Xk(s)))

Algorithm 3 ASCM
1. Q̄ = ASCM

(
[S1S2 · · · Sm] ,

[
σ̄X1 σ̄X2 · · · σ̄Xm

])
2. if tied ranks are found in S then
3. S → S̄
4. end if
5. for i = 1 to m do
6. for j = 1 to m do

7. r̄XiXj
= rS̄iS̄j or r̄XiXj

= 1 −
6
(
Si−Sj

)(
Si−Sj

)T
l(l2−1)

8. c̄XiXj
= r̄XiXj

σ̄Xi
σ̄Xj

9. end for
10. end for
11. return Q̄

Algorithm 4 PVD
1.

[
label, µ̄t+1

Y

]
= PVD

(
Q̄, µ̄t

Y

)
2. for i = 1 to m do
3. A = Q̄ deleting ith row and ith column
4. B = ith column of Q̄ deleting c̄XiXi
5. C = c̄XiXi
6. if A is (almost) singular then
7. A−1 = A†

8. end if
9. β0 = BTA−1B

10. β1 = −
(

1T · A−1 · 1
)−1

11. β2 = 1 · A−1B
12. yt+1

i = C − β0 − β1(β2 − 1)2

13. end for
14. µ̄t+1

Y = mean
(
Yt+1

)
15. µ̂t+1

Y = θµ̄t
Y + (1 − θ) µ̄t+1

Y
16. for i = 1 to m do

17. if (m − 1)
y
t+1
i

µ̂
t+1
Y

∈
[
F−1

χ2
m−1

(α) ,F−1

χ2
m−1

(1 − α)

]
then

18. label (i) = 0 #normal
19. else
20. label (i) = 1 #abnormal
21. end if
22. end for
23. Ȳt+1 =

{
yt+1
i

∣∣∣ i = 1, 2, · · · n and label(i) = 0
}

24. µ̄t+1
Y = mean

(
Yt+1

)

Algorithm 5 SADS
1: Time t
2: Initialise µ̄t

Y
3: Go to time t = t + 1
4: ith MN
5: collect Xi

6: obtain σ̄Xi
7: obtain Si by sorting Xi in ascending order
8: Ŝ∗

i = DSC (Si)
9: transmit Ŝ∗

i and σ̄Xi
to the CH

10: CH
11: collect Ŝ∗

i and σ̄Xi
, i = 1, 2, · · · ,m

12: Si = DSD
(
Ŝ∗
i

)
13: Q̄ = ASCM

(
[S1S2 · · · Sn] ,

[
σ̄X1 σ̄X2 · · · σ̄Xn

])
14:

[
Lt, µ̄t+1

Y

]
= PVD

(
Q̄, µ̄t

Y

)
15: repeat
16: 3-14
17: until the end

Algorithm 6 PMD
1. Time t
2. ith MN
3. collect an observation xt

i
4. transmit xt

i to the CH
5. CH
6. collect Zt = {xt

1, x
t
2, · · · , x

t
m}

7. for i = 1 to m do
8. di = xt

i − median
(
Zt − {xt

i}
)

9. end for
10. {d̄1, d̄2, · · · , d̄m} = abs (standarise ({d1, d2, · · · , dm}))
11. for i = 1 to m do
12. if d̄i > η then
13. Lt

i = 1
14. else
15. Lt

i = 0
16. end if
17. end for
18. Go to time t = t + 1
19. repeat
20. 2-18
21. until the end

TABLE 1
Notation list

Notation Explanation
subscript, 1, 2, · · · ,m index of node
superscript, t ∈ Z period of time
m total number of sensor nodes
¯ an estimation
E/µ expectation
V ar/σ2 variance
X a random variable (sensed measurement)
Z a set of random variables
Ẑ Z − {X}
w weight
ε estimation error
W a vector of weights
Q sample covariance matrix
Λ Lagrange function
θ Lagrange multiplier
A,B,C intermediate quantities
β0, β1, β2 intermediate quantities
N Gaussian distribution
χ2 chi-squared distribution
F cumulative density function
α, α ∈ (0, 0.5) confidence level
Y V ar (X)
y predication variance/observation of Y


