APPENDIX A
TRIGONOMETRIC INTEGRATION

This section gives exact integral equations for trigono-
metric functions, which are required to implement the
discussed algorithms. The following expressions can be
found in the book by [1], where = ~ N(z|u,o?) is

Gaussian distributed with mean x and variance 2.

E,[sin(z)] = /sin(x)p(x) dz = exp(—”;) sin(u),

2

E,lcos(z)] = [ cos(z)p(z) dz = exp(—%F) cos(n)
E,[sin(z)?] = [ sin(z)*p(z)dz
= 1(1 — exp(—20?) cos(2p)) ,
E,[cos(z)?] = [ cos(z)*p(z) dx

(14 exp(—20?) cos(2p))

E,[sin(x) cos(z)] = [ sin(z) cos(z)p(z) dz
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3 sin(2z)p(z) dz

exp(—20?) sin(2p) .
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APPENDIX B
GRADIENTS

In the beginning of this section, we will give a few
derivative identities that will become handy. After that
we will detail derivative computations in the context of
the moment-matching approximation.

B.1 Identities

Let us start with a set of basic derivative identities [2]
that will prove useful in the following;:
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= —(a-b)"[(A+B)}(A+B);](a-b).

In in the last identity B(:,¢) denotes the ith column of
B and B(i,:) is the ith row of B.

B.2 Partial Derivatives of the Predictive Distribution
with Respect to the Input Distribution

For an input distribution &;_1 ~ N (&1 | ft,_1, f]t_l),
where 2 = [z'u']" is the control-augmented state,
we detail the derivatives of the predictive mean p4,
the predictive covariance X 5, and the cross-covariance
cov[®;—1,A] (in the moment matching approximation)
with respect to the mean ji,_, and covariance 3; ; of
the input distribution.

B.2.1 Derivatives of the Predictive Mean with Respect to
the Input Distribution

In the following, we compute the derivative of the
predictive GP mean p, € R with respect to the
mean and the covariance of the input distribution
N (@i—1|py_1,2i-1). The function value of the predic-
tive mean is given as
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X €xp ( - %(571 - ﬂtq)T(Aa + 2~:t—1)71(53i - ﬂ‘tfl)) .

B.2.1.1 Derivative with respect to the Input Mean:
Let us start with the derivative of the predictive mean
with respect to the mean of the input distribution. From
the function value in Eq. (2), we obtain the derivative
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B.2.1.2 Derivative with Respect to the Input Co-
variance Matrix: For the derivative of the predictive
mean with respect to the input covariance matrix ¥;_4,
we obtain
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By defining
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for i = 1,...,
derivatives

n. Here, we compute the two partial
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where we need to explicitly account for the symmetry
of A, + X;_1. Then, we obtain
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where we used a tensor contraction in the last expres-
sion inside the bracket when multiplying the difference
vectors onto the matrix derivative.

B.2.2 Derivatives of the Predictive Covariance with Re-
spect to the Input Distribution

For target dimensions a,b = 1,...,E, the entries of the
predictive covariance matrix £a € RF¥*¥ are given as

oA, =B (Q —q,9) )8,

+0ap (07, — tr((Ka+ 05, 1)7'Q))  (13)
where 6., = 1 if a = b and 0 otherwise.
The entries of Q € R"*" are given by
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where 7,5 =1,...,n.

B.2.2.1 Derivative with Respect to the Input Mean:
For the derivative of the entries of the predictive co-
variance matrix with respect to the predictive mean, we
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where the derivative of @);; with respect to the input
mean is given as
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B.2.2.2 Derivative with Respect to the Input Co-
variance Matrix: The derivative of the entries of the pre-
dictive covariance matrix with respect to the covariance
matrix of the input distribution is
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Since the partial derivatives dq,/ 0%, and 0q,/ 0,1
are known from Eq. (7), it remains to compute
0Q/0%,_1. The entries Qij, 1,5 = 1,...,n are given in
Eq. (14). By defining
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Using the partial derivative
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the partial derivative of Q;; with respect to the covari-
ance matrix X;_; is given as
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where the partial derivative of e, with respect to the
entries "9 is given as
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The missing partial derivative in Eq. (25) is given by
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where we define
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This finally yields
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which concludes the computations for the partial deriva-
tive in Eq. (18).

B.2.3 Derivative of the Cross-Covariance with Respect
to the Input Distribution

For the cross-covariance
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The corresponding derivative with respect to the co-
variance matrix 3;_; is given as
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